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The structure and two- and three-dimensional stability properties of a linear array of
compressible Stuart vortices (CSV; Stuart 1967; Meiron et al. 2000) are investigated
both analytically and numerically. The CSV is a family of steady, homentropic,
two-dimensional solutions to the compressible Euler equations, parameterized by
the free-stream Mach number M∞, and the mass flux ε inside a single vortex
core. Known solutions have 0 <M∞ < 1. To investigate the normal-mode stability
of the generally spatially non-uniform CSV solutions, the linear partial-differential
equations describing the time evolution of small perturbations to the CSV base
state are solved numerically using a normal-mode analysis in conjunction with a
spectral method. The effect of increasing M∞ on the two main classes of instabilities
found by Pierrehumbert & Widnall (1982) for the incompressible limit M∞ → 0 is
studied. It is found that both two- and three-dimensional subharmonic instabilities
cease to promote pairing events even at moderate M∞. The fundamental mode
becomes dominant at higher Mach numbers, although it ceases to peak strongly
at a single spanwise wavenumber. We also find, over the range of ε investigated,
a new instability corresponding to an instability on a parallel shear layer. The
significance of these instabilities to experimental observations of growth in the
compressible mixing layer is discussed. In an Appendix, we study the CSV equations
when ε is small and M∞ is finite using a perturbation expansion in powers of
ε. An eigenvalue determining the structure of the perturbed vorticity and density
fields is obtained from a singular Sturm–Liouville problem for the stream-function
perturbation at O(ε). The resulting small-amplitude steady CSV solutions are shown
to represent a bifurcation from the neutral point in the stability of a parallel shear
layer with a tanh-velocity profile in a compressible inviscid perfect gas at uniform
temperature.

1. Introduction
The incompressible turbulent mixing layer has been the subject of many experi-

mental investigations. Winant & Browand (1974) studied an incompressible mixing
layer at moderate Reynolds number, and found large spanwise-organized vortical
structures. Brown & Roshko (1974) demonstrated the existence of these spanwise
structures at large values of the Reynolds numbers. It has been shown that these large
eddies are principally responsible for boosting the growth rates of incompressible shear
layers and fluid entrainment into the mixing region, via pairing and amalgamations:
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Winant & Browand (1974), Brown & Roshko (1974), Browand & Latigo (1979),
Bernal & Roshko (1986) and Moore & Saffman (1972).

With the advent of high-speed propulsion systems, experiments involving com-
pressible mixing layers gained importance. Birch & Eggers (1972) compiled a
survey of free turbulent shear layer data and showed that as the Mach number
increased, the turbulent growth rate decreased. This was initially thought to be due to
the different free-stream densities used to increase the free-stream Mach number.
Brown & Roshko (1974) showed that the large decrease in growth rates was
produced by increasing compressibility, not by density effects. Bogdanoff (1983)
and Papamoschou & Roshko (1988) used the concept of convective Mach number,
Mc, to investigate this reduction in growth rates, finding good collapse in the growth-
rate data. More recently Slessor, Zhuang & Dimotakis (2000) suggest a new scaling
parameter suitable for flows with free-stream density and sound-speed ratios far from
unity. Gas compressibility also produces changes in the large-scale vortex structures
in mixing layers. Experimental evidence for the form of these structures is not
definitive: Goebel & Dutton (1991), Samimy & Elliott (1990), Hall, Dimotakis &
Rosemann (1993), Clemens & Mungal (1995) and Papamoschou & Bunyajitradulya
(1996). It is clear from these experiments that the large-scale structures become more
three-dimensional as Mc increases.

Much numerical and analytical work has been done using parallel models for the
compressible shear layer: Lees & Lin (1946), Lin (1953), Lessen, Fox & Zien (1965,
1966), Blumen (1970), Blumen, Drazin & Billings (1975), Sandham & Reynolds
(1991, 1990), Zhuang, Dimotakis & Kubota (1990a), Zhuang, Kubota & Dimotakis
(1990b) and Zhuang & Dimotakis (1995). These works show a clear decrease in linear
growth rates as Mc increases, and further, that three-dimensional instabilities are more
vigorously amplified at higher Mach numbers. Non-parallel base flows, including
the incompressible Stuart vortex and Kelvin–Helmholtz billows, have been used to
determine the two- and three-dimensional stability properties of incompressible free
shear layers: Pierrehumbert & Widnall (1982), Klaassen & Peltier (1985, 1989, 1991).
These works illustrate the effect and importance of secondary instabilities, related to
the organized vortical structures present in incompressible mixing layers, in the onset
of three-dimensional turbulent flow. In the present work we utilize a non-parallel flow
model for the compressible shear layer in an effort to study the role of compressibility
in suppressing some of these secondary instabilities. This model is the compressible
Stuart vortex (CSV) proposed by Meiron, Moore & Pullin (2000) as a continuation
to finite Mach number of the Stuart (1967) vortex.

The CSV is briefly reviewed in § 2. Our approach to the numerical analysis of the
instabilities of compressible shear flows is outlined in § 3, and the numerical method is
described. Parallel base flows are discussed in § 4 and instabilities of the non-uniform
steady flow represented by the CSV are described in § 5, where comparisons are made
with Pierrehumbert & Widnall (1982) and Klaassen & Peltier (1989) in the limit of very
small Mach number. The effect of subsonic free-stream Mach number on the linear
instabilities which seed pairing interactions, and which generate streamwise streaks,
is examined. Increasing the Mach number will be seen to inhibit the effectiveness of
the pairing instability to promote pairing events. At larger values of Mc, there does
not appear to be one dominantly amplified spanwise wavelength for either of the
linear instabilities. This may be a possible explanation for the disorganization of the
large-scale structures as the Mach number increases. An analysis of the structure of
the CSV, when the mass flux in the closed cat’s-eye regions is small, is presented in
the Appendix.
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2. Compressible Stuart vortex (CSV)
2.1. Euler equations

To facilitate the analysis of the CSV, we briefly review the formulation of Meiron et al.
(2000, henceforth referred to as MMP), who considered the steady compressible Euler
equations, together with the equation of state for a calorically perfect gas, for a shear
flow in two-dimensional Cartesian coordinates (x, y), with x the streamwise and y the
transverse coordinate. The fluid velocity, vorticity, density, and pressure are denoted
by u, ω, ρ and p respectively, and * indicates a dimensional quantity. The subscript
∞ is used to refer to uniform reference quantities as y → ±∞, where the flow consists
of opposed uniform streams, each with speed U ∗

∞. In the following, unsubscripted
fluid quantities are made non-dimensional using their reference values at infinity, and
entropy is scaled with c∗

v . The free-stream Mach number is M∞ = U ∗
∞/a∗

∞.
MMP constructed a compressible continuation of the incompressible Stuart

vortex for M∞ > 0. A stream function, ψ(x, y)–vorticity formulation of the steady
compressible Euler equations was used where the velocity components are given by

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (2.1)

MMP then assumed homentropic flow and that the total enthalpy depends on ψ(x, y)
alone, h ≡ h(ψ). A closed set of equations was obtained for the choice, dh/dψ = e−2µψ ,
where µ is a parameter to be discussed subsequently. The momentum and energy
equations may then be written as

∇2ψ − 1

ρ
(∇ψ · ∇ρ) = ρ2e−2µψ, (2.2)

M2
∞

2
(∇ψ)2 +

ρ2(ργ −1 − 1)

γ − 1
=

M2
∞ρ2

2

(
1 − 1

µ
e−2µψ

)
. (2.3)

On the semi-infinite rectangle, {R : x ∈ [0, π], y ∈ [0, ∞]}, the boundary conditions
are

∂ψ

∂y
= 0 on (y = 0, 0 � x � π),

∂ψ

∂x
= 0 on (x = 0, 0 � y � ∞), (2.4)

ψ ∼ y + d as (y → ∞, 0 � x � π), ρ → 1 as (y → ∞, 0 � x � π), (2.5)

which require symmetry about y =0. MMP show that two further conditions are
needed to characterize solutions to (2.2)–(2.3). The first is to specify

ε = ψ(0, 0) − ψ(π, 0), (2.6)

where ε, 0 � ε < ∞, is the mass flux inside the vortex core. The second is a constraint on
the total dimensionless circulation. The unknowns are ψ(x, y; M∞, ε), ρ(x, y; M∞, ε),
µ(M∞, ε), and d(M∞, ε).

2.2. Incompressible Stuart vortex

When M∞ → 0, with ε fixed, the solution to (2.2)–(2.3) is ρ(x, y) = 1, µ = 1 and

ψ = ln(κ cosh(y) +
√

κ2 − 1 cos(x)), ω = −(κ cosh(y) +
√

κ2 − 1 cos(x))−2. (2.7)

The mass flux may be written as ε = 2 ln(κ +
√

κ2 − 1), from which it is easily
verified that κ = cosh(ε/2). This is the Stuart (1967) vortex. The parameter κ ∈ (1, ∞)
parameterizes the family of solutions. When κ = 1, ε → 0, a parallel flow is obtained,
u = tanh(y). When κ → ∞, ψ describes the potential flow produced by an infinite
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array of point vortices with spacing 2π. Intermediate κ gives a smooth, periodic
distribution of vorticity, where ψ is even about the lines x = ±nπ with n integer. The
steady streamline pattern is a periodic array of cat’s eyes, with stagnation points on
the symmetry line at y = 0. The displacement thickness is d = ln(κ/2).

2.3. Homentropic continuation

MMP found a continuation of the Stuart vortex to homentropic compressible flow
by obtaining a family of solutions to (2.2)–(2.3) with two parameters, M∞, and ε.
For well-posedness, they found it necessary to treat µ(M∞, ε) as an eigenvalue, its
value being determined by solving the nonlinear governing equations. For a given ε,
their numerical solutions indicated a small range of subsonic M∞ for which locally
supersonic smooth flow fields existed, while above some maximum, but subsonic, value
of M∞ the solution branch was found to terminate. The termination is thought to be
due to the onset of shocklets in the supersonic region, which would invalidate the
governing equations. No two-dimensional solutions were found to exist for M∞ � 1.
For M∞ 
 1, at finite ε, a Rayleigh–Janzen expansion showed that µ is determined
from a solvability condition on the linearized equations, giving

µ0(M∞) = 1 + 1
2
M2

∞ + O
(
M4

∞
)
. (2.8)

To O(M2
∞), µ0 is independent of ε. It follows that the limiting solution for the

homentropic CSV when ε → 0 at finite M∞ is not given by its incompressible counter-
part. This small-mass-flux limit was not resolved by MMP, and is analysed here in
the Appendix, where it is also shown that this solution is intimately connected with
the neutral stability point in the stability of parallel compressible flows.

The CSV has several limitations as a model of the nonlinear waves which are
physically realizable in a compressible parallel flow. Both experiments and numerical
simulations indicate that as Mc is increased beyond 0.6, the large-scale structures
in the mixing layer become three-dimensional, a property which is not captured by
the CSV. Furthermore, DNS of compressible vortices show entropy variations in the
core, whereas the CSV is homentropic. Also, in a physical shear layer, the vorticity
is compressed into thin regions, known as braids, between the vortex centres. The
present two-dimensional CSV shows no such structures at the hyperbolic stagnation
points. Nevertheless, the CSV still provides a useful model for examining the effect of
compressibility on the interaction between neighbouring vortices in the compressible
mixing layer environment.

3. Linearized stability of the compressible Euler equations
3.1. Stability of non-uniform steady flows

We now study the linearized stability of the CSV. The time evolution of small perturba-
tions to solutions of (2.2)–(2.3), with finite ε and M∞, is considered. For the investiga-
tion of stability, the ψ–ρ formulation is not appropriate and we utilize a primitive
variable formulation in which, for given M∞ and ε, the 2π-streamwise-periodic CSV
base state is denoted by (ρ(x, y), u(x, y), v(x, y), s(x, y), T (x, y)), and variables are
non-dimensionalized as for the CSV. Small perturbations to the base state are denoted

χ ≡ [ρ ′, u′, s ′]

≡ [ρ ′(x, y, z, t), u′(x, y, z, t), v′(x, y, z, t), w′(x, y, z, t), s ′(x, y, z, t)], (3.1)
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where z is the spanwise direction and u′ denotes the three velocity components. The
perturbations, assumed to be isentropic, have a modal representation of the form

[ρ ′, u′, s ′](x, y, z, t) = eiαxeiβze−σ t [ρ̂, û, ŝ](x, y). (3.2)

For parallel base flows, the x dependence of hatted quantities is dropped. For non-
parallel base flows, the hatted quantities are taken to be periodic in x, with the same
period as the base flow. The y boundary conditions to be enforced are that as y → ±∞
the hatted quantities decay to zero. No constraint will be placed on the parameters
α and β , save that they be real. For non-parallel periodic base flows, 0 � α < 1. The
parameter β is the wavenumber of disturbances in the spanwise direction. For parallel
base flows, it may be coupled with α to define the angle of a particular disturbance θ

as tan(θ) = β/α. This does not have meaning for non-parallel base flows. No claim is
made that perturbations (3.2) are complete or that perturbations do not exist which
have an algebraic dependence on time.

The five linearized equations to be considered are the continuity, three momentum
and entropy equations. Assuming (3.2) leads to an eigenvalue problem, with eigenvalue
σ = σr + iσi , the real part of which represents exponential growth/decay:

(L1 + ∇ · u) ρ̂ + (iαρ + [ρ, x]) û + [ρ, y] v̂ + iβρ ŵ = σ ρ̂, (3.3)

1

ρ
(iαg + [g, x] + L2u) ρ̂ +

(
L1 +

∂u

∂x

)
û +

(
∂u

∂y

)
v̂ +

1

ρ
(iαh + [h, x]) ŝ = σ û, (3.4)

1

ρ
([g, y] + L2v) ρ̂ +

(
∂v

∂x

)
û +

(
L1 +

∂v

∂y

)
v̂ +

1

ρ
[h, y] ŝ = σ v̂, (3.5)

1

ρ
iβgρ̂ + L1ŵ +

1

ρ
iβhŝ = σŵ, (3.6)(

∂s

∂x

)
û +

(
∂s

∂y

)
v̂ + L1ŝ = σ ŝ. (3.7)

The operators L1, L2, and [·, ·], and the functions g and h may be defined as

L1 = iαu + u · ∇, L2 = u
∂

∂x
+ v

∂

∂y
, [f, x] =

∂f

∂x
+ f

∂

∂x
, (3.8)

g(x, y) =
1

γM2
∞

(
1 + (γ − 1)es(x,y)−s∞

)
ργ −1(x, y), (3.9)

h(x, y) =
1

γM2
∞

es(x,y)−s∞ ργ −1(x, y). (3.10)

As M∞ → 0, the linearized equations approach a singular limit. For homentropic
base flows the linearized entropy equation decouples from the remaining equations,
implying

ds ′

dt
= 0, s ′(t) ≡ s(t, x(t), y(t)) where ẋ(t) = u(x, y), ẏ(t) = v(x, y). (3.11)

Thus, a normal-mode assumption combined with the linear approximation imply,
without loss of generality, that perturbations to a homentropic flow may be assumed
to be homentropic.

Using similar arguments to those used by Pierrehumbert & Widnall (1982, hence-
forth referred to as PW), some useful symmetry properties of equations (3.3)–(3.7)
may be derived. Putting β → −β , and reversing the sign of ŵ, an eigenfunction
belonging to σ , for wavenumber β , may be turned into an eigenfunction belonging
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to the same eigenvalue, but now for wavenumber −β . Thus, it is only necessary to
consider β > 0. A similar argument gives α > 0. Finally, as a consequence of the time
reversibility of the Euler equations, every exponentially damped mode has a corres-
ponding exponentially growing mode. This means that the only stable modes are the
neutral modes, σr = 0.

3.2. Numerical method

To find the spectrum of equations (3.3)–(3.7), they must be approximated by a
finite-order matrix, whose eigenvalues can be found using conventional methods.
This is done using a spectral collocation technique. The perturbations, (ρ̂, û, ŝ),
are spectrally represented with basis functions that satisfy the boundary conditions.
Spectral differentiation and integration is used to compute the individual components
of the discretized matrix. The basis functions are not orthogonal; therefore, care must
be taken to convert the resulting discretized system to standard eigenvalue form.

The techniques described, for non-parallel periodic base flows, are adapted from
Boyd (1978a, b, 1982) and Cain, Ferziger & Reynolds (1984). The discretized pertur-
bations are written as

(ρ̂, û, ŝ)(x, y) =

Nx/2∑
m=−Nx/2+1

Ny−3∑
n=0

(amn, bmn, cnm)eimxΦn(y), (3.12)

where Φn(y) are basis functions, which decay as y → ±∞. The interval (−1, 1) is

stretched onto (−∞, ∞) using the algebraic stretching, Y = y/
√

η2 + y2, where η

is the stretching parameter. The functions Φn(y) are combinations of Chebyschev
polynomials satisfying the boundary conditions. Letting φn(y(Y )) = Tn(Y ),

Φn(y) =

{
φ0(y) − φn+2(y), n even

φ1(y) − φn+2(y), n odd.

The number of collocation points in y is Ny , chosen to be the zeros of the Chebyschev
polynomial of order Ny , with Nx points in x.

3.3. Discrete matrix

Discrete operators will be denoted with boldface sanserif symbols, and the discrete
state vector denoted by c. Thus equations (3.3)–(3.7) may be cast in the following
non-standard eigenvalue form, where the growth rates σ appear as the eigenvalues:

Ac = σBc.

The matrix A is a block matrix, with Ne × Ne blocks, each representing a single term,
multiplying any of (ρ̂, û, ŝ), from the left-hand side of the system of equations (3.3)–
(3.7). Each block is dense and of size Nb × Nb, where Nb = Nx(Ny − 2). Thus A is
a N × N dense matrix, where N = NeNb. Storage requirements for A limited the
maximum values of Nx and Ny which could be used.

Let q(x, y) be a general function of the base flow, and of the parameters (α, β , M∞),
defined from the left-hand side of equations (3.3)–(3.7). Then, the type of integral
which must be considered in computing a general element from any of the blocks of
A is

IA(k, s, m, n) =

∫ ∞

−∞

∫ 2π

0

η

η2 + y2
q(x, y)eimxe−ikxφn(y)φs(y) dx dy,
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where (k, s, m, n) define the element in the block and q(x, y) characterizes the block.
The basis functions in x and y imply

IA(k, s, m, n) ≈
Nx∑
i=1

Ny∑
j=1

wx(k)wξ (s)q(xi, ξj )e
imxi e−ikxi cos(nξj ) cos(sξj ),

where wx(k), and wξ (s) are the normalization weights, xi are the collocation points in
the x-direction, and ξj the inverse cosine of the collocation points Yj . The summations
are done using routines from the FFTW package.

The matrix B is a constant block-diagonal matrix, depending only on the parameters
(Ne, Nx, Ny). The Ne diagonal blocks are identical, the elements of which are given by

IB(k, s, m, n) = 2πδmk ×
{

1
2
πδns +

π if both n and s even
1
2
π if both n and s odd.

The eigenvalues of this system were computed using routines from the lapack

package.
Since all base flows considered here are unbounded in y, the spectrum of the

continuous operator is expected to contain both discrete and continuous components.
Our physical interest is in the discrete part, which will represent large-scale compres-
sible growth dynamics. It was therefore necessary to separate, numerically, the discrete
spectrum from the much larger set of eigenvalues that are the discrete approximation
to the continuous spectrum. This was done here by testing the convergence of each
eigenvalue and eigenvector with increased resolution, the discrete spectrum showing
rapid convergence to four figures or better, while the continuous spectrum converged
much more slowly.

4. Parallel base flows
The numerical method was verified against known results for the stability of

compressible parallel base flows: Sandham & Reynolds (1990, 1991), Zhuang et al.
(1990b), Lin (1953), Lessen et al. (1965). Two different base flows were investigated: the
class of Crocco–Busemann (CB) profiles and a constant-density, parallel, hyperbolic-
tangent velocity profile (CD). For the CB profiles, the Crocco–Busemann relationship
is used to relate a parallel temperature profile to a parallel velocity profile. Here, we
make the additional simplification of specifying a simple hyperbolic tangent profile,
with a parameter ωh set to fix the vorticity thickness

u(y) = tanh(ωhy), T (y) = 1 + 1
2
(γ − 1)M2

∞u2(y), δω =
2

ωh

. (4.1)

We choose ωh = 1 giving δω = 2. The resulting profile is close, but not identical, to the
true CB profile. The CD profile is homentropic, whereby its stability analysis admits
a single equation for ρ ′(x, y, z, t), used extensively in the Appendix.

The convective Mach number Mc, (Bogdanoff 1983; Papamoschou & Roshko 1988),
allows results from temporal and spatial stability analysis to be compared. For the
type of flows used in this analysis Mc =M∞, implying that the two may be used
interchangeably. Table 1 shows results from runs with Ny = 64 and Ny = 256, η =1.5,
compared with results from Sandham & Reynolds (1990). In the range n= 0−40, the
agreement of the Chebyschev coefficients, (an, bn, cn), from the different resolutions,
is on the order of four figures, where they decay exponentially fast by four orders
of magnitude. For values of M∞ above about 0.6, the most amplified modes become
three-dimensional, in good agreement with Sandham & Reynolds (1990, 1991).
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σr

Mc Ny = 64 Ny = 256 S&R

0.01 0.1896791 0.1896792 0.189
0.60 0.1175104 0.1175119 0.116
1.20 0.0529660 0.0529666 0.053

Table 1. Calculated values of σr , computed at (αmax , βmax), compared at different resolutions
for the CB profile. S&R denotes Sandham & Reynolds (1990).

Case ε κ

A 0.0283 1.0001
B 0.2826 1.0100
C 0.8871 1.1000

Table 2. The three representative values of the mass flux, ε, used.

5. Instabilities of the CSV
We now consider the stability of the non-uniform CSV states. The base flow

is given by numerical solutions to (2.2)–(2.3) obtained by MMP using a spectral
method, and repeated here for the stability calculations. We emphasize that known
CSV solutions have 0 � M∞ < 1, even though they may contain embedded regions
of locally supersonic flow. Thus our stability analysis is limited to non-uniform
compressible shear flows with subsonic free streams. For the stability problem, there
is a four-dimensional space of parameters comprising ε, M∞ for the base flow and α,
β . Here we consider three representative values of ε, shown in table 2, across a range
of M∞. Figure 1 shows examples of the base flow at these values for M∞ = 0.51. Case
A is a near-parallel flow and is represented well by the solution derived from the
perturbation analysis in the Appendix. For case C, the base flow is highly non-parallel
with the velocities in the x- and y-directions on the same order of magnitude. The
coherent spanwise vortices have become compact, and the dilatation has risen by
two orders of magnitude from case A. The continuation of case C terminates at M∞
just above 0.6. This is thought to be due to the presence of shocklets, which appear
to decelerate the flow from supersonic conditions at the edge of the vortex, to the
stagnation points between the vortex cores. Sandham & Reynolds (1991) observed
the appearance of shocks in two-dimensional unsteady simulations at similar M∞.
This suggests that case C may provide the best model of the vortical structures in the
compressible shear layer.

The spectral solutions reported are for η = 1.5, and [Nx, Ny] = ([32, 32], [32, 64],
[64, 32]), with four-figure agreement found for the growth rates from the various
resolution runs. The larger resolutions are the highest which could be achieved with
available computing resources. It is necessary to scale (σr , α, β) with the vorticity
thickness of the base flow,

δ(ε, M∞) = − 1

π

∫ 2π

0

∫ ∞

0

yω(x, y) dx dy. (5.1)

The scaling factors are given by δ(ε, M∞)/δ(ε, 0), figure 2(a).
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Figure 1. Examples of the base flow profiles for M∞ = 0.51: (a) ∇ · u(x, y), (b) ω(x, y). The
maximum or minimum contour value is given for each profile; dashed lines indicate negative
contours here and in subsequent similar figures.

0

1.00

0.25

(a)

0.75

0.50

0.25

0.50 0.75 1.00

M∞

δ
(ε

, M
∞

) 
/ δ

(ε
, 0

)

CSV: M∞ = 0.01, Nx = 32, Ny = 64
PW: Pairing Instability

KP: Pairing Instability
Lamb: σr = 0.25

(b)

ε = 0.0000
0.2868
0.8871

0.3

0.2

0.2

0.4 0.6 0.8

(κ2 – 1)0.5 / κ

σ
rδ

 (
ε
, M

∞
) 

/ δ
 (

ε
, 0

)

0.1

0

Figure 2. (a) Scaling factors determined from the vorticity thickness. The zero-mass-flux curve
is given by (1−M2

∞)1/2, an expression obtained from the perturbation analysis in the Appendix.
(b) Comparison with Pierrehumbert & Widnall (1982) and Klaassen & Peltier (1989).

5.1. Incompressible limit, M∞ = 0

The stability algorithm may be run with M∞ = 0.01 for comparison with PW and
Klaassen & Peltier (1989, henceforth referred to as KP). We first discuss α = 0.5
(the first subharmonic) in which adjacent vortices in the base flow are displaced in
opposite directions. The growth rates for α =0.5, β = 0 are shown in figure 2(b) as a
function of core size parameter. The growth rates are real, increasing monotonically
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Figure 3. Solid lines: Pierrehumbert & Widnall (1982), dashed lines: results from CSV runs
with M∞ = 0.01. Labels represent the value of the vortex core size parameter. (a) Helical
pairing instability, α = 0.5. (b) Translative instability, α = 0.

as the core size parameter is increased toward the Lamb (1932) limit of σr = 0.25
for a row of point vortices. Differences in resolution, [32, 64] here and [4, 6] for PW,
account for the discrepancies in the growth rates. The agreement with KP, who used
double the resolution of PW, is satisfactory. Also results very like PW were found
when using their resolution. We find that growth rates close to the point-vortex limit
are achieved at ε = 1.696, for which the two-dimensional pairing growth rate has
risen to σr = 0.2482. Modes with finite β are referred to as helical pairing modes.
Their growth rates are shown in figure 3(a) compared with PW. These modes have
a short-wave cutoff in β , which implies that spanwise scales with βδω > const do not
amplify as they advect downstream.

Our final comparison with PW is done for the translative instability for which
α = 0. Perturbations then have the same x-periodicity as the base flow from which it
follows that this mode is not an extension of any parallel flow instability. The growth
rates are shown in figure 3(b). When ε → 0 (parallel base flow), the growth rates fall
identically to zero. In the incompressible limit, the maximum growth rate of this insta-
bility, for fixed ε, is just smaller than that of the two-dimensional pairing instability.

5.2. Compressible instabilities

5.2.1. Two-dimensional subharmonic instabilities

We first discuss two-dimensional modes with β = 0. Generally, the discrete spectrum
consisted of three distinct real eigenvalues. The growth rates of the largest of these
eigenvalues are shown in figure 4. This eigenvalue always attains its maximum value
for the subharmonic mode α = 0.5, which seeds the pairing instability. To compute
the mode shape, the eigenvector is first normalized, and multiplied by the eiαx phase
factor. Each eigenmode is chosen to be purely real. The sign and absolute magnitude
of these modes are arbitrary, but the magnitude of the perturbation variables relative
to each other can be important, as it is an indicator of the dominant mechanisms by
which the linear instability acts in any given area of the parameter space. Figure 5
shows contour plots of selected eigenmodes from case C runs. For case A and B runs,
the smaller values of ε produce thin flat base-flow vortices, figure 1. This is reflected
in the eigenmode structure for these runs, which show similar features to the case C
modes. As with parallel base flows, the density perturbation is unimportant for the low
Mach number runs, being four orders of magnitude smaller than either of the velocity
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Figure 4. Pairing instability growth rate: (a) ε = 0.0283, (b) ε =0.2826, (c) ε = 0.8871.

perturbations. The density eigenmodes keep the same basic shape across the Mach
number range, but by M∞ = 0.61 these modes have increased by four orders of relative
magnitude.

Two examples of vorticity eigenmodes (obtained from the velocity eigenvectors) are
shown in figure 5. These resemble a skewed vortex dipole, which become flattened
and elongated as M∞ increases. This eigenmode has a nodal line which runs through
the centre of the unperturbed vortex. The angle that this nodal line makes with the
positive x-axis is labelled φ1, −90◦ <φ1 < 0◦. The presence of a sloped nodal line
implies that this eigenmode initiates the clockwise rotation of the vortices at x = π
and x = 3π about each other, which ultimately leads to pairing. The more negative φ1,
the more effective the eigenmode is at initiating a pairing event. The angle between
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|φ1| (deg.)

M∞ case A case B case C

0.01 2.5 17.1 28.1
0.61 0.8 5.5 6.1
0.81 0.5 3.2 –

Table 3. Values of |φ1| for the various mass fluxes investigated.

the line connecting the maximum negative and positive values of vorticity and the
nodal line is denoted φ2, and is a measure of the skewness of the eigenmode. Over
the range of M∞ investigated, φ2 remains almost constant for each of the different
runs: φ2 ∼ 28◦ for case A, φ2 ∼ 50◦ for case B, and φ2 ∼ 68◦ for case C. In contrast,
increasing M∞ has a dramatic effect on φ1, with the slope of the nodal line becoming
less negative as M∞ increases; see table 3. Thus, increasing compressibility not only
damps the growth rate of the pairing instability, but it also decreases the eigenmode’s
effectiveness in initiating the pairing process, as seen in figure 6.

5.2.2. A parallel instability

The next most vigorously amplified instability is largely independent of mass flux.
Its growth rate behaviour and that of an instability to a parallel CD profile show
remarkable similarity, figure 7. Indeed, growth rates from case A and B runs agree with
two- and three-dimensional CD growth rates to within four figures. The eigenmode
structure, less the eiαx prefactor, is independent of x, and bears a striking likeness
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to the structures arising from a CD base profile. This suggests that it corresponds
to an instability occurring on the parallel shear layer, and it is therefore denoted
the parallel instability. Its presence implies that even after nonlinear processes have
caused the primary roll-up of the parallel flow, the instability which initiated the
roll-up remains active and relatively unaltered, except that it becomes subdominant
to the more unstable pairing instability.

The real part of the third largest eigenvalue decays rapidly as either M∞ or ε is
increased, being extremely weakly amplified for case C runs. Usually, it maximizes
at α =0.5, and so may be considered subharmonic. Over a certain range of the base
flow parameters it becomes bimodal, figure 8. Its eigenmodes indicate that it tends to
alter the strength of neighbouring vortices, enhancing one while diminishing another.
It may be linked to the draining instability discovered by KP, and can be seen as
an aid to the pairing process: Winant & Browand (1974). The eigenmodes show
some small-scale structure, indicating that these higher-order modes are sensitive to
numerical inaccuracy and inaccuracy in the inviscid physical model. Due to its weak
amplification at higher values of ε and M∞, the three-dimensional properties of this
instability are not investigated exhaustively.
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5.2.3. Three-dimensional subharmonic instabilities

We now discuss results obtained for the pairing and parallel instabilities, the two
most unstable in two dimensions, for non-zero values of β . Relevant growth rates are
shown in figure 9. The parallel mode again behaves as if it were an instability on a
parallel shear layer, and for M∞ < 0.6 is most unstable in the two-dimensional limit.
The pairing mode is also most unstable in the two-dimensional limit below some
critical value of M∞, which decreases as ε is increased. The pairing mode remains
subharmonic, with αmax = 0.5 for all values of β and M∞. Note that for case C runs,
above the transitional value of M∞, for β < 0.25 the growth rate curves are relatively
flat, indicating that there is no single dominating spanwise wavelength. In contrast
to the parallel instability, the short-wave cutoff for the pairing mode shows strong
dependence on both M∞ and ε. This may be due to thin flat vortex-like structures,
present in low-ε base flows, supporting small-scale instabilities, which are damped
by the stabilizing effect of self-induced rotation of the more compact vortex cores
present in high-ε base flows (Rosenhead 1930).

The z-dependence of the vorticity eigenmodes may be deduced from the symmetry
properties of the governing equations. The anti-nodal points of the spanwise vorticity
are located at βz =0, ±π, ±2π . . . , which correspond to the nodal points of both
the streamwise and transverse modes. At low Mach numbers, M∞ < 0.4, the spanwise
vorticity structure is similar to figure 5(a), with the difference that φ1 decreases
slightly as β increases. PW suggested that the helical pairing mode would promote
localized pairing of neighbouring vortices. This would lead to phase dislocations
in the spanwise direction (Chandrsuda et al. 1978), and the generation of coherent
three-dimensional structures connecting the spanwise vortices like those seen in plan
views of low Mach number mixing layers (Clemens & Mungal 1995). For M∞ > 0.4
the spanwise vorticity assumes a wavy structure, figure 10(a). At βz = 0, the vortex
at π is no longer shifted up and to the right, so that localized pairing may occur;
rather it now moves up and slightly to the left. Thus, the base flow tends to resist
the action of the linear instability. Upon consideration of the streamwise vorticity
eigenmode, it is plausible that the perturbation of figure 10 would lead to a hairpin-
type structure, with the heads of the hairpin located at βz = 0, 2π . . . and the legs
at βz = π/2, 3π/2 . . . (Sandham & Reynolds 1991). The fact that these structures
are not readily identifiable in mixing layer experiments at low Mach numbers may
be due to a combination of effects. The small relative magnitude of the streamwise
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vorticity eigenmode, combined with the short-wave cutoff in β , implies that the
instability would saturate before nonlinear processes take over. Therefore, as with
two-dimensional subharmonic modes, as M∞ increases, the subharmonic instabilities
do not trigger interactions between neighbouring vortices.

5.2.4. Three-dimensional fundamental modes

These modes have the same periodicity in the streamwise direction as the base flow.
For finite β the spanwise vorticity eigenmode is anti-symmetric about its centre,
and remains so even as M∞ is increased; figure 11. This implies that the instability
causes a net translation of the vortex cores, up and to the right at spanwise locations
βz = 0, ±2π . . . , rather than a bulging. A fundamental mode with no spanwise varia-
tion is neutrally stable, and shifts the vortex row an infinitesimal distance. For these
reason, PW labelled this mode the translative instability.

The linear incompressible mechanism by which regions of two-dimensional elliptical
streamlines can generate three-dimensional flows is denoted the elliptical instability.
It is localized in the vortex core, with growth rates tending to a finite value as
the wavelength along the vortex axis tends to zero: Pierrehumbert (1986), Bayly
(1986). In viscous flows this inviscid mechanism leads to real vortex instability, with a
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short-wavelength cutoff imposed by the action of viscosity (Landman & Saffman
1987). The physical mechanism of instability is one of vortex stretching (Waleffe
1990), and may exist in a relatively unaltered state in compressible subsonic gases,
where the growth rates and eigenmodes depend only on the local velocity gradient
tensors of the basic flow (Lifschitz & Hameiri 1991). Thus, the translative mode
structure, figure 11, and growth rates, figure 12, link it to an instability of the elliptical
type. It is unique to non-parallel flows, for parallel flows it is not present, while for
near parallel flows, case A computations, it is very weakly amplified.

The normalized strain, s(π, 0)/ω(π, 0), of the unperturbed vortex cores yields a
measure of the local ellipticity of the CSV streamlines. A value of zero gives locally
circular streamlines, while a value of one implies infinite ellipticity, that is a locally
plane Couette flow. The agreement between growth rates from the translative
instability, parameterized by the normalized strain, and from pure elliptical flows
is marginal, figure 12(d). However, this may explain why the translative instability
shows little damping with increased levels of compressibility. For case C runs, with
M∞ > 0.2, this mode represents the most unstable perturbation to the CSV.
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PW speculated that the deposition of streamwise vorticity, by the eigenmodes and
a tilting process induced by the base flow, would lead to the creation of counter-
rotating streamwise vortices. Sandham & Reynolds (1991) simulated a translative-type
instability and showed how the straining field of this type of instability can pull the
vorticity into the braid regions, leading to the formations of streamwise vortices
(Lin & Corcos 1984). A feature necessary for a streaky streamwise structure to occur
is a single dominant spanwise wavenumber emerging from a random perturbation.
As M∞ increases figure 12 implies that this scenario is highly unlikely. It is not
clear that a superposition of many translative instabilities, with the same growth
rate but different spanwise wavelengths, could produce a coherent three-dimensional
structure.

5.3. Comparison with experiment

In incompressible flows, large eddies play an important role in both entrainment and
determining the growth rates of the shear layer through pairings and amalgamations.
For the CSV, the pairing-type instabilities maximize at subharmonic streamwise
wavelengths over the entire M∞ range. However, their ability to trigger interactions
between neighbouring vortices becomes very much reduced as the convective Mach
number is increased. This is consistent with visualizations from Papamoschou &
Bunyajitradulya (1996), who for Mc > 0.5 find no evidence of pairing in their
compressible shear layers. They also speculate that the lack of organization in both the
side and plan views suggests the coexistence of both two- and three-dimensionalities
in the flow. Again this is consistent with the picture obtained from the CSV, where
the growth rates of the pairing, helical pairing and translative modes are very similar
over much of the Mach number range.

Stability analysis of parallel base flows suggest that at a given Mach number there
is one spanwise wavelength which has maximum amplification. However, the plan
views from Papamoschou & Bunyajitradulya (1996) show that the chaotic patterns
reveal every possible oblique angle to the free-stream flow. A possible explanation for
this may be found in figures 13(a), 9 and 12. These suggest that the range of spanwise
wavenumbers with similar growth rates is quite large. Indeed for the higher Mach
number case C runs the growth rate for the translative instability reduces by as little
as 5% from its maximum value as the spanwise wavenumber increases by a factor of
five.

In order to compare data from different experiments, the growth rates obtained must
be normalized by the growth rates of an incompressible shear layer with the same
density and velocity ratios. A variety of models, containing one or more free
parameters, have been used for this purpose: Bogdanoff (1983), Ragab & Wu (1989),
Clemens & Mungal (1995), Slessor et al. (2000). These different normalization
methods, combined with a non-injective relationship between density ratio and
convective Mach number, lead to substantial scatter in experimental growth rate
data. The normalized growth rate trends for the three different mass fluxes investi-
gated, as a function of Mc, are shown with results from various experimental in-
vestigations in figure 13. At any given Mc, the scaled growth rates from the CSV
stability calculation lie in the mid to high range of the various experimental results.
We remark that the present study yields temporal linear growth rates, whereas
experiments measure the spatial growth of the mixing layer. Our results and those of
Papamoschou & Bunyajitradulya (1996) indicate a distinct lack of interaction between
eddies in supersonic shear layers. Their slow evolution may be due a combinations of
decreased growth rates and this lack of interaction. Whatever the reason it is difficult
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Figure 13. (a) βmax × δ(ε,M∞)/δ(ε, 0) vs M∞. Solid lines represent the three-dimensional hel-
ical pairing instability. Dashed lines represent the three-dimensional translative instability. Dot-
ted line for the three-dimensional parallel instability, ε =0. (b) Case A. (c) Case B. (d) Case C.
In (b), (c) and (d), �, Sirieix & Solignac (1966); �, Chinzei et al. (1986) (S & CM); �,
Papamoschou & Roshko (1988); �, Goebel & Dutton (1991) (S); �, Hall et al. (1993);
�, Clemens & Mungal (1995); �, Slessor (1998); �, Goebel & Dutton (1991) (CM); �,
Samimy & Elliott (1990); �, Papamoschou & Roshko (1986) �, Chinzei et al. (1986) (RW); �,
Papamoschou (1986), dashed: CD two-dimensional modes, dash-dot: CD three-dimensional
modes, solid: CSV two-dimensional pairing, dotted: CSV two-dimensional parallel, dash-
dot-dot: CSV three-dimensional helical pairing, long-dash: CSV three-dimensional parallel,
short-dash: CSV three-dimensional translative. Initials after the experimentalists name, indi-
cate by whom the results have been normalized: S, Slessor; CM, Clemens & Mungal; RW,
Ragab & Wu.

to see their importance in governing the entrainment process in supersonic shear
layers.

6. Conclusions
In the Appendix, we show that the two-dimensional neutral-stability wavenumber of

a parallel shear flow in a constant-temperature compressible perfect gas is a stability
bifurcation point where, at given free-stream Mach number, the solution branch
corresponding to the CSV begins. This establishes a link between the linear stability
of a class of parallel shear flows with tanh-velocity profiles in a compressible fluid and
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this special class of steady solutions to the Euler equations. It also partially motivates
the extension of the theory of stability of plane parallel flows to include the stability
of the spatially non-uniform CSV states themselves. This has been done here using a
spectral-collocation method. As a physical model for the dynamics of compressible
shear layers, the CSV structure is not without limitations, principally that for a fixed
mass flux within a vortex core the homentropic solution branch terminates at a
subsonic free-stream Mach number. Thus, while the CSV state apparently cannot be
extended to supersonic free-stream flow, it nonetheless provides a useful base state
for assessing the effect of compressibility on the stability properties of non-uniform
compressible flows.

Three main classes of instabilities on the CSV were investigated: subharmonic,
translative and a new parallel mode, each within the parameter space of the free-stream
Mach number, the finite mass flow inside a closed vortex core and the wavenumber
space of the perturbations. For any value of spanwise wavenumber it was found
that the largest of the eigenvalues maximizes at either subharmonic or fundamental
streamwise frequencies. The parallel instability, which might be interpreted physically
as having initiated a primary roll-up producing a CSV-like structure, remains active
and relatively unaltered. The persistence of this instability for the strongly nonlinear
CSV flows may explain the success of linear growth rates, obtained from parallel
shear flows, in postdicting experimentally observed growth rates in the compressible
turbulent mixing layer.

In agreement with Pierrehumbert & Widnall (1982), we found that for low Mach
numbers the subharmonic mode has its greatest growth rate for eigenmodes with
no spanwise variation, where it can be linked to an instability of the pairing type.
As the Mach number increases this perturbation becomes three-dimensional and the
‘term pairing’ instability no longer applies, since it can no longer be interpreted as
an initiating mechanism for interactions between neighbouring vortices. This is in
agreement with experimental observations that the structures in compressible shear
layers are largely inert. Not only do the subharmonic instabilities lose their ability
to pair neighbouring vortices at higher Mach numbers, but this instability becomes
subdominant to the more vigorous translative instability. The translative instability
shows a broadband nature with respect to spanwise wavenumbers. This can be
interpreted as being compatible with experimental observations, where structures at
every possible oblique angle are observed.

We remark that the two-dimensional continuations of the finite-mass-flux CSV from
a parallel flow, at fixed Mach number, is not unique. In particular a continuation
from a three-dimensional neutral stability point is possible since the relevant stability
curves do not terminate when the free-stream Mach number becomes supersonic.
If such a continuation were admissible it may enable the construction of vortical,
three-dimensional, globally supersonic solutions to the steady compressible Euler
equations. Finally, the growth of non-homentropic disturbances to non-parallel base
flows may be important. These may be investigated using a CSV constructed using
a homenthalpic continuation to finite M∞ of the incompressible Stuart vortex. The
entropy equation does not decouple from the system represented by (3.3)–(3.7), which
may be physically relevant if the initial disturbances to experimental compressible
shear layers were not approximately homentropic.

This work was supported by the Academic Strategic Alliances Program of the
Accelerated Strategic Computing Initiative (ASCI/ASAP) under subcontract no.
B341492 of DOE contract W-7405-ENG-48.
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Appendix. Small-mass-flux limit: ε 
 1, M∞ finite
In this Appendix we analyse the homentropic CSV equations, (2.2) and (2.3), at finite

M∞ for ε 
 1. These equations are perturbed about a parallel constant-density profile
of form to be determined from the analysis. This small-mass-flux solution is shown
to coincide with neutrally stable perturbations to a CD base profile, Blumen (1970).
Thus, the connection of the CSV to linearized-stability theory may be established.
Numerical solutions of the CSV equations, following MMP, suggest an expansion of
the form

ψ(x, y; M∞, ε) = ψ0(y; M∞) + εψ1(x, y; M∞) + O(ε2), (A 1)

ρ(x, y; M∞, ε) = 1 + ερ1(x, y; M∞) + O(ε2), (A 2)

µ(M∞, ε) = µ0(M∞) + O(ε2), (A 3)

where µ0(M∞) is to be determined. On substitution into (2.2) and (2.3), it is found
that

momentum O(1) :
d2ψ0

dy2
= e−2µ0ψ0, (A 4)

momentum O(ε) : ∇2ψ1 + 2µ0 e−2µ0ψ0ψ1 = 2e−2µ0ψ0ρ1 +
dψ0

dy

∂ρ1

∂y
, (A 5)

enthalpy O(1) :

(
dψ0

dy

)2

= 1 − 1

µ0

e−2µ0ψ0, (A 6)

enthalpy O(ε) :

(
1

M2
∞

−
(

dψ0

dy

)2
)

ρ1 = (e−2µ0ψ0 )ψ1 −
(

dψ0

dy

)2
∂ψ1

∂y
. (A 7)

Integrating equation (A 6) and imposing the boundary condition (2.4) gives

ψ0(y) =
1

µ0

ln(cosh(µ0y)) − 1

2µ0

ln(µ0). (A 8)

It follows that ψ1(x, y) and ρ1(x, y) must decay to zero as y → ∞. At this stage, µ0(M∞)
remains undetermined. To proceed, (A 8), (A 7) and (A 5) are used to obtain a single
equation for ψ1. Boundary condition (2.4), the change of variables ζ = tanh(µ0y),
and a cosine transform in x, where s(ζ ; αs) denotes the transform of ψ1(x, y), yields
a singular Sturm–Liouville problem for s(ζ ; αs). Its eigenvalue is λ= (αs/µ0)

2, where
αs is the steady streamwise wavenumber. Using the equation for s(ζ ; αs) a singular
Sturm–Liouville equation for the transform of the density perturbation, r(ζ ; αs), may
be derived. Hence, µ0 is to be obtained from an eigensolution of the O(ε) equation
for ψ or ρ:

d

dζ

(
1 − ζ 2

ζ 2

dr

dζ

)
− λ

(
1 − M2

∞ζ 2

ζ 2(1 − ζ 2)

)
r = 0, (A 9)

r ′(ζ = 0; αs, M∞) = r(ζ = 1; αs, M∞) = 0. (A 10)

Thus, s(ζ ; αs) and r(ζ ; αs) may be solved for and the inverse transforms taken to give

λ = 1 − M2
∞, αs = 1, µ0 =

1√
1 − M2

∞
. (A 11)

ψ1(x, y) = cos(x)sech (µ0y)1−M2
∞, ρ1(x, y) = µ0M∞ψ1(x, y). (A 12)

The parallel stream function, when ε → 0, is thus given by (A 8), with µ0(M∞) given
by (A 11). Hence, the limiting parallel shear flow for the CSV when ε → 0 with M∞
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fixed may be obtained from its incompressible counterpart upon application of a
Prandtl–Glauert stretching in the y-direction. Clearly, the solution branch terminates
as M∞ → 1. The above expressions are expected to be uniformly valid in M∞, when
ε 
 1, and agree with the numerical solution of MMP to six figures. Expanding
µ0(M∞) in (A 11) for M∞ 
 1 gives agreement with (2.8) to O(M2

∞).
Equation (A 9) may be used to link (A 12) to the neutrally stable density

perturbation to a parallel compressible constant-density shear layer (just as Stuart
(1967) linked his solution to the stable perturbation to a parallel hyperbolic incom-
pressible shear layer). To see this, we first derive a single equation governing distur-
bances to the simple CD profile of § 4, from which we can obtain neutral solutions
for streamwise wavenumbers exceeding a critical value.

For the CD profile, (3.3)–(3.7) may be reduced to a single equations for ρ ′(x, y, z, t):(
M2

∞L3 − L
(
D2

x + D2
y + D2

z

)
+ 2

du

dy
DxDy

)
ρ ′(x, y, z, t) = 0. (A 13)

where in this Appendix

L =
∂

∂t
+ u(y)

∂

∂x
, Dx =

∂

∂x
, Dy =

∂

∂y
, Dz =

∂

∂z
. (A 14)

Setting the time derivatives in equation (A 13) to zero allows steady solutions to be
obtained. For two-dimensional disturbances to a parallel flow, there is stability to any
perturbation with streamwise wavenumber larger than the steady wavenumber; Lin
(1953). Obtaining the steady solutions will allow steady (transitional) wavenumbers
to be determined. Take the Fourier transform in x and z, and denote the streamwise
and spanwise wavenumbers at which the steady solutions may be found αs and βs .
Define α̂2

s = α2
s + β2

s , α̂sM̂∞ = αsM∞, and use the transformation ζ = tanh(ωhy), to
obtain the following singular Sturm–Liouville equation, with eigenvalue λ= α̂2

s /ω
2
h,

for the steady transformed density perturbation, R(ζ ; αs, βs):

d

dζ

(
1 − ζ 2

ζ 2

dR

dζ

)
− λ

(
1 − M̂2

∞ζ 2

ζ 2(1 − ζ 2)

)
R = 0, (A 15)

R(1) = R(−1) = 0. (A 16)

In the two-dimensional limit this equation is identical to (A 9). For a non-trivial
solution, the parameters (ωh, α̂s , M̂∞) must be connected through the eigenvalue
relationship, derived previously. This implies that

1

ω2
h

=
α2

s

(
1 − M2

∞
)

+ β2
s(

α2
s + β2

s

)2
. (A 17)

When ωh is specified, this condition defines a zero contour on which remaining
parameters must lie. Thus, non-trivial steady disturbances to the hyperbolic tangent
profile are obtained only for parameters M∞, αs and βs , which lie on the surface
defined in (α, β, M∞) space. Disturbances which lie just inside the steady surface are
amplified, while those just outside are neutral: Lin (1953) and Lessen et al. (1965). If
the Mach number is also set to zero, the incompressible solution of Michalke (1965)
is obtained.

Thus, at given M∞ the two-dimensional steady neutral stability point can be
viewed as a bifurcation point from which the small-mass-flux CSV solution begins.
Interpreting the steady stability point in this fashion provides an existence proof for
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steady three-dimensional supersonic solutions to the compressible Euler equations.
Relation (A 17) indicates that steady supersonic perturbations do exist, but for non-
zero values of βs . Introducing βs in this equation allows αs to remain real, or µ to
remain finite, as the sonic threshold is crossed. If this point were to be viewed as a
bifurcation point from which a three-dimensional steady vortex solution begins, then
arclength continuation might be used to move into a regime where the full nonlinear
Euler equations are solved.
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